
ARL-TN-0759•MAY 2016

US Army Research Laboratory

Resolving the Orientation of Cylinders and
Cuboids fromProjected AreaMeasurements
by Richard Saucier

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement
or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

ARL-TN-0759•MAY 2016

US Army Research Laboratory

Resolving the Orientation of Cylinders and
Cuboids fromProjected AreaMeasurements
by Richard Saucier
Survivability/Lethality Analysis Directorate, ARL

Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704‐0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704‐0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202‐
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a
currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD‐MM‐YYYY)

2. REPORT TYPE

3. DATES COVERED (From ‐ To)

4. TITLE AND SUBTITLE

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

18. NUMBER
 OF
 PAGES

	

19a. NAME OF RESPONSIBLE PERSON

a. REPORT

b. ABSTRACT

c. THIS PAGE

19b. TELEPHONE NUMBER (Include area code)

 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

May 2016 Final

Resolving the Orientation of Cylinders and Cuboids from Projected Area
Measurements

Richard Saucier

ARL-TN-0759

Approved for public release; distribution is unlimited.

November 2015–January 2016

AH80

US Army Research Laboratory
ATTN: RDRL-SLB-S
Aberdeen Proving Ground, MD 21005-5068

The FATEPEN model predicts the penetration of a mass striking a target plate for a variety of shapes, including cylinders and
cuboids—among others. Crucial to the use of the model is a good estimate of not only the mass and velocity but also the impact
orientation in terms of pitch, yaw, and roll. Yaw cards and orthogonal X-rays can provide estimates of the impact projected area,
but the model makes use of the impact angle, which is defined to be the minimum angle that a face makes with the target plate.
This report addresses this issue by calculating the pitch-yaw-roll rotation sequence that will bring about the orientation at impact
from orthogonal projected area measurements. It is shown that the impact angle is uniquely determined in the case of cylinders,
but that is not the case for cuboids. Furthermore, for cuboids multiple impact angles for the same projected area measurements can
lead to significantly different FATEPEN predictions. This leads to the conclusion that cylinders and not cuboids should be used for
FATEPEN validation.

FATEPEN, RCC, RPP, fragment impact, fragment orientation, projected area, orthogonal X-rays, pitch-yaw-roll

44

Richard Saucier

410-278-6721Unclassified Unclassified Unclassified UU

ii

Approved for public release; distribution is unlimited.

Contents

List of Figures v

List of Tables vi

List of Listings vii

Acknowledgments viii

1. Summary 1

2. Introduction 1

3. Methods, Assumptions, and Procedures 2
3.1 Orientation of a Cylinder 3

3.1.1 Projected Areas from Cylinder Orientation 3
3.1.2 Cylinder Orientation from Projected Areas 4

3.2 Orientation of a Cuboid 6
3.2.1 Projected Areas from Cuboid Orientation 7
3.2.2 Cuboid Orientation from Projected Areas 9

4. Results and Discussion 14
4.1 Cylinder Orientation Sample Case 14
4.2 Cuboid Orientation Sample Case 16

4.2.1 Impact Angle and Effective Yaw Angle 17

5. Conclusions 19

6. References 21

Appendix A. Formula for an Euler Sequence of Rotations 23

Appendix B. Yaw Angle of a Cylinder as a Function of Shape Factor 29

List of Symbols, Abbreviations, and Acronyms 33

iii

Approved for public release; distribution is unlimited.

Distribution List 34

iv

Approved for public release; distribution is unlimited.

List of Figures
Fig. 1 Description of pitch, yaw, and roll. ..2

Fig. 2 An oriented cylinder with projected area on orthogonal planes 16

Fig. 3 An oriented cuboid with projected area on orthogonal planes 16

v

Approved for public release; distribution is unlimited.

List of Tables
Table 1 Pitch, yaw, and roll rotations of unit vectors3

Table 2 FATEPEN predictions for a 725-gr steel cuboid with a striking velocity of
1500 f/s impacting a 0.25-inch mild steel plate using version 3.3.10.3. In
each case, the projected areas on the orthogonal planes are the same. Note,
in particular, the sensitivity of the residual velocity, vr. 17

Table 3 FATEPEN predictions for a 725-gr steel cuboid with a striking velocity of
1500 f/s impacting a 0.25-inch mild steel plate using version 3.3.18.0. In
each case, the projected areas on the orthogonal planes are the same. . 19

vi

Approved for public release; distribution is unlimited.

List of Listings
Listing 1 orient.cpp . 12

Listing 2 rcc.cpp. 14

Listing A-1 reverse.cpp . 27

Listing B-1 cyl.cpp. 31

vii

Approved for public release; distribution is unlimited.

Acknowledgments
I would like to thank Timothy Mallory for his interest in this problem, suggestions
that improved this report, and the numerous stand-alone FATEPEN runs he conducted
to check the results. I would also like to thank John Auten for catching some errors
and his technical review of this document. Of course, I accept full responsibility for
any errors that may remain.

viii

Approved for public release; distribution is unlimited.

1. Summary
The FATEPEN model predicts the penetration of a mass striking a target plate for
a variety of shapes, including cylinders and cuboids—among others. Crucial to
the use of the model is a good estimate of not only the mass and velocity but also
the impact orientation in terms of pitch, yaw, and roll. Yaw cards and orthogonal
X-rays can provide estimates of the impact projected area, but the model makes use
of the impact angle, which is defined to be the minimum angle that a penetrator
face makes with the target plate. This report addresses this issue by calculating the
pitch-yaw-roll rotation sequence that will bring about the orientation at impact from
orthogonal projected area measurements. It is shown that the impact angle is uniquely
determined in the case of cylinders, but that is not the case for cuboids. Furthermore,
for cuboids multiple impact angles for the same projected area measurements can
lead to significantly different FATEPEN predictions. This leads to the conclusion
that cylinders and not cuboids should be used for FATEPEN validation.

2. Introduction
The FATEPEN1 model is a Fortran code for simulating penetration of fragments,
long rods, and projectiles into target plates and predicting penetration, perforation,
residual mass, and residual velocity. It provides the following shapes: sphere, right
circular cylinder (RCC), round-nose cylinder, sharp-nose cylinder, tapered/truncated
cylinder, and rectangular parallelepiped (RPP). This report is limited to RCCs, which
we will simply call cylinders, and RPPs, which we will call cuboids. Unlike the
THOR2 model, which only requires an impact presented area, the FATEPEN model
requires a specific shape and orientation.

The impact presented area, or projected area, is a key parameter that affects the
penetration process since the penetration depth scales with the mass per unit pre-
sented area for a given striking velocity. But the FATEPEN model goes beyond
the presented area and also requires the angle that each flat face of the striking
mass makes with the target plate. This means that we need to account for both the
presented area and the orientation of the fragment to use FATEPEN properly.

1

Approved for public release; distribution is unlimited.

3. Methods, Assumptions, and Procedures
We first define a standard orientation of the cylinder or cuboid as the starting
orientation and then describe the operational procedure to give it a specific final
orientation. This standard orientation will be with the center at the origin of a right-
handed Cartesian (x, y, z) coordinate system and the length of the cylinder or cuboid
aligned with the z-axis. (The target plate is taken to be parallel to the x-y plane, and
the fragment velocity vector is along the negative z axis.) The operational procedure
will be in terms pitch, yaw, and roll, where pitch is a counterclockwise rotation
about the x-axis, yaw is a counterclockwise rotation about the y-axis, and roll is a
counterclockwise rotation about the z-axis.∗ For convenience, we also define ı̂, ̂,
and k̂ to be unit vectors along the x, y, and z axis, respectively, as shown in Fig. 1.

x

y

z

ı̂

̂

k̂

yaw

pitch

roll

Fig. 1. Description of pitch, yaw, and roll

Pitch, yaw, and roll are then described by the operators Rı̂(φp), R̂(φy), and Rk̂(φr),
where the unit vector subscript denotes the axis of rotation, and φp, φy, and φr are
pitch, yaw, and roll angles, respectively. A rotation sequence accounts for the fact
that the unit vectors are also transformed by prior rotations. Thus, a pitch-yaw-roll
rotation sequence is described by

R = Rk̂′′(φr)R̂′(φy)Rı̂(φp), (1)

where the operators are applied from right to left—first pitch, then yaw, then roll—
and where ̂′ is the transformed ̂ vector after the pitch rotation, and k̂′′ is the doubly
transformed k̂ vector after the pitch and yaw rotations. Now we make use of the
fact that we generate the same net rotation if we apply the sequence in reverse order

∗To avoid any confusion, note that FATEPEN uses a pitch-yaw-roll rotation sequence, which we
follow in this report, but much of the aerospace industry uses a yaw-pitch-roll rotation sequence.

2

Approved for public release; distribution is unlimited.

about the fixed axes.∗ This means that

R = Rk̂′′(φr)R̂′(φy)Rı̂(φp) = Rı̂(φp)R̂(φy)Rk̂(φr) (2)

and we only have to concern ourselves with rotations about fixed axes. Table 1 lists
all 3× 3 = 9 combinations of rotations applied to the unit vectors.

Table 1. Pitch, yaw, and roll rotations of unit vectors

Rotation ı̂ ̂ k̂

Pitch: Rı̂(φp) ı̂ cosφp̂ + sinφpk̂ − sinφp̂ + cosφpk̂

Yaw: R̂(φy) cosφy ı̂− sinφyk̂ ̂ sinφy ı̂ + cosφyk̂

Roll: Rk̂(φr) cosφr̂ı + sinφr ̂ − sinφr̂ı + cosφr ̂ k̂

3.1 Orientation of a Cylinder
The cylinder has a length L and diameter D. In standard orientation the center of the
cylinder is at the origin and the length is aligned with the z-axis.

3.1.1 Projected Areas from Cylinder Orientation
So let us apply a pitch-yaw-roll rotation sequence to the cylinder in standard orien-
tation and work out the projected areas on the orthogonal y-z, x-z, and x-y planes.
The orientation of the cylinder is completely described by its axis of rotation, which
is along the unit vector k̂. Let û be the final orientation of the k̂ vector. Then, using
Table 1, we get

û = Rı̂(φp)R̂(φy)k̂

= Rı̂(φp)(sinφŷı + cosφyk̂)

= sinφŷı + cosφy(− sinφp̂ + cosφpk̂). (3)

It is also convenient to specify û in terms of the direction cosines:

û = cosφ1̂ı + cosφ2̂ + cosφ3k̂, (4)

∗See Appendix A for a derivation of this result.

3

Approved for public release; distribution is unlimited.

where cosφ1 = û · ı̂, cosφ2 = û · ̂, and cosφ3 = û · k̂. Comparing Eqs. 3 and 4
gives the correspondence

φ1 = cos−1(sinφy),

φ2 = cos−1(− sinφp cosφy), (5)

φ3 = cos−1(cosφp cosφy).

Let L be the length of the cylinder and D be its diameter. Then the projected areas
onto the orthogonal planes are

Ayz = LD| cos
(π
2
− φ1

)
|+ π

4
D2| cosφ1| = LD| sinφ1|+

π

4
D2| cosφ1|

Axz = LD| cos
(π
2
− φ2

)
|+ π

4
D2| cosφ2| = LD| sinφ2|+

π

4
D2| cosφ2| . (6)

Axy = LD| cos
(π
2
− φ3

)
|+ π

4
D2| cosφ3| = LD| sinφ3|+

π

4
D2| cosφ3|

Therefore, given the pitch and yaw of the cylinder, Eqs. 5 and 6 give us the projected
areas.

3.1.2 Cylinder Orientation from Projected Areas
Next, we work out the inverse problem of determining the pitch and yaw from the
measured projected areas. Thus, given the length L, diameter D, and the projected
areas of an RCC onto the orthogonal planes, we want to solve for the orientation of
the RCC. More specifically, we seek the FATEPEN pitch and yaw rotation sequence
that will bring about this orientation.∗ It is convenient in what follows to specify the
final orientation in terms of the polar angle, θ, measured from the z-axis and φ, the
azimuthal angle measured from the x-axis in the x-y plane:

û = sin θ cos φ̂ı + sin θ sin φ̂ + cos θk̂. (7)

There is no loss of generality if we restrict û to lie in the first octant of the unit
sphere, so that

0 ≤ θ ≤ π/2 and 0 ≤ φ ≤ π/2. (8)

∗Ordinarily we would need pitch, yaw, and roll to completely specify orientation, but placing the
axis of the RCC along the z (roll) axis eliminates the need to consider roll.

4

Approved for public release; distribution is unlimited.

Comparing Eqs. 4 and 7 gives

θ = φ3 and φ = tan−1
(
cosφ2

cosφ1

)
. (9)

All the formulas in Eq. 6 are of the form

a sinα + b cosα = Ap, (10)

with α = φ1, φ2, or φ3, a = LD, b = πD2/4, and Ap the projected area, Ayz, Axz,
orAxy. We can solve this for the angle α by first introducing another angle β, defined
by

β ≡ tan−1(b/a), (11)

which gives a =
√
a2 + b2 cos β and b =

√
a2 + b2 sin β, and then Eq. 10 becomes

√
a2 + b2 cos β sinα +

√
a2 + b2 sin β cosα =

√
a2 + b2 sin(α + β) = Ap. (12)

Now it is easy to show that
√
a2 + b2 = Amax, the maximum presented area of the

RCC, so that 0 ≤ Ap/
√
a2 + b2 ≤ 1, and therefore

sin(α + β) =
Ap√
a2 + b2

. (13)

Two possible solutions to this equation are

α = sin−1
(

Ap√
a2 + b2

)
− tan−1

(
b

a

)
or

α = π − tan−1
(
b

a

)
− sin−1

(
Ap√
a2 + b2

)
. (14)

In practice we try both, so this gives 23 = 8 possible combinations for φ1, φ2, and
φ3. But by imposing the constraint that

cos2 φ1 + cos2 φ2 + cos2 φ3 = 1, (15)

we will find that only one combination will work. Once φ1, φ2, and φ3 have thus
been found, we return to Eq. 9 to get θ and φ.

5

Approved for public release; distribution is unlimited.

Next we need a rotation that will align k̂ with û. It is easy to check that Rê(θ), where

ê =
k̂× û

|k̂× û|
= − sin φ̂ı + cos φ̂, (16)

is this rotation. That is, Rê(θ)k̂ = û. The quaternion representation of this rotation
is

qê(θ) = cos(θ/2) + ê sin(θ/2) = cos(θ/2) + (− sin φ̂ı + cos φ̂) sin(θ/2). (17)

Finally, this quaternion can be factored into a pitch-yaw-roll rotation sequence.3 The
prescription is as follows:

1. Set p0 = cos(θ/2), p1 = − sinφ sin(θ/2), p2 = cosφ sin(θ/2), p3 = 0.

2. Set A = p1p2 − p0p3, B = p21 − p23, D = p20 − p22.

3. Then φr = tan−1[−2A/(B +D)].

4. Set c0 = cos(φr/2) and c3 = sin(φr/2).

5. Set q0 = p0c0 + p3c3, q1 = p1c0 − p2c3, q2 = p2c0 + p1c3, q3 = p3c0 − p0c3.

6. Then φp = 2 tan−1(q1/q0) and φy = 2 tan−1(q2/q0).

Thus, we accomplish what we set out to do: obtain the pitch and yaw rotation
sequence that will give the desired projected areas. For a cylinder there are actually
4 orientations that give the same projected areas, which are (φp, φy), (φp,−φy),
(−φp, φy), and (−φp,−φy).

3.2 Orientation of a Cuboid
The cuboid, or RPP, has a length L, width W , and thickness T , where L ≥ W ≥ T ,
and is initially oriented so that the length is along the z-axis, the width is along the
x-axis and the thickness is along the y-axis. Thus, the initial areas along each of the
axes are Ax = LT , Ay = LW , and Az = WT . We take ı̂ to be a unit vector along
the x-axis, ̂ to be a unit vector along the y-axis, and k̂ to be a unit vector along the
z-axis. Let

û = x̂ı + ŷ + zk̂ with x2 + y2 + z2 = 1 (18)

6

Approved for public release; distribution is unlimited.

be a unit vector on the unit sphere. Then the projected area of the cuboid orthogonal
to û is

Ap(x, y, z) = (Ax̂ı + Ay ̂ + Azk̂) · û = Axx+ Ayy + Azz. (19)

As we vary the direction of û, the rate of change of the projected area is given by

DûAp =∇Ap(x, y, z) · û

= ||∇Ap(x, y, z)|| ||û|| cos θ

= ||∇Ap(x, y, z)|| cos θ, (20)

where θ is the angle between the gradient and the unit vector. From this expression,
it is clear that the area is maximized when cos θ is a maximum, which occurs when
θ = 0. The gradient along this direction is

∇Ap(x, y, z) =
∂Ap
∂x

ı̂ +
∂Ap
∂y

̂ +
∂Ap
∂z

k̂ = Ax̂ı + Ay ̂ + Azk̂, (21)

and therefore the magnitude of the maximum projected area is

Amax = ||∇Ap(x, y, z)|| =
√
A2
x + A2

y + A2
z , (22)

and the view direction for this maximum is given by the unit vector

ûmax =
Ax̂ı + Ay ̂ + Azk̂

Amax

. (23)

By construction, the minimum projected area is initially oriented along the z-axis,
Amin = Az, and is realized along the unit vector ûmin = k̂.

3.2.1 Projected Areas from Cuboid Orientation
Now let us work out the projected areas from a given pitch-yaw-roll rotation se-
quence, R. Again, making use of Eq. 2 and applying the rotations from Table 1
successively gives

R̂(φy)Rk̂(φr)Ax̂ı = Ax cosφr(cosφŷı− sinφyk̂) + Ax sinφr̂,

R̂(φy)Rk̂(φr)Ay ̂ = −Ay sinφr(cosφŷı− sinφyk̂) + Ay cosφr̂, (24)

R̂(φy)Rk̂(φr)Azk̂ = Az(sinφŷı + cosφyk̂).

7

Approved for public release; distribution is unlimited.

Collecting terms we get

R̂(φy)Rk̂(φr)Ax̂ı = Ax cosφr cosφŷı + Ax sinφr̂− Ax cosφr sinφyk̂,

R̂(φy)Rk̂(φr)Ay ̂ = −Ay sinφr cosφŷı + Ay cosφr̂ + Ay sinφr sinφyk̂, (25)

R̂(φy)Rk̂(φr)Azk̂ = Az sinφŷı + Az cosφyk̂.

Finally, applying pitch, we get

RAx̂ı =+ Ax cosφr cosφŷı

+ Ax sinφr(cosφp̂ + sinφpk̂)

− Ax cosφr sinφy(− sinφp̂ + cosφpk̂),

RAy ̂ =− Ay sinφr cosφŷı (26)

+ Ay cosφr(cosφp̂ + sinφpk̂)

+ Ay sinφr sinφy(− sinφp̂ + cosφpk̂),

RAzk̂ =+ Az sinφŷı

+ Az cosφy(− sinφp̂ + cosφpk̂).

and collecting terms,

RAx̂ı =+ Ax cosφr cosφŷı

+ Ax(sinφr cosφp + cosφr sinφy sinφp)̂

+ Ax(sinφr sinφp − cosφr sinφy cosφp)k̂, (27)

RAy ̂ =− Ay sinφr cosφŷı

+ Ay(cosφr cosφp − sinφr sinφy sinφp)̂

+ Ay(cosφr sinφp + sinφr sinφy cosφp)k̂, (28)

RAzk̂ =+ Az sinφŷı− Az cosφy sinφp̂ + Az cosφy cosφpk̂. (29)

Now let Axy be the projection on the x-y plane, Axz be the projection on the x-z
plane, and Ayz be the projection on the y-z plane. Then we have

Axy = [R(Ax̂ı + Ay ̂ + Azk̂)] · k̂, (30)

Axz = [R(Ax̂ı + Ay ̂ + Azk̂)] · ̂, (31)

Ayz = [R(Ax̂ı + Ay ̂ + Azk̂)] · ı̂. (32)

8

Approved for public release; distribution is unlimited.

Three is the maximum number of sides that can project unto a plane for a cuboid, so
we can include all the contributions by using the absolute value. Thus, we get the
projected areas

Axy =Ax| sinφr sinφp − cosφr sinφy cosφp|+

Ay| cosφr sinφp + sinφr sinφy cosφp|+

Az| cosφy cosφp|, (33)

Axz =Ax| sinφr cosφp + cosφr sinφy sinφp|+

Ay| cosφr cosφp − sinφr sinφy sinφp|+

Az| cosφy sinφp|, (34)

Ayz =Ax| cosφr cosφy|+ Ay| sinφr cosφy|+ Az| sinφy|. (35)

3.2.2 Cuboid Orientation from Projected Areas
Next, given measured values for Axy, Axz, and Ayz, we want to solve Eqs. 33–35
for φp, φy, and φr. This is a system of 3 simultaneous nonlinear equations, which
can be solved numerically by Newton’s method in 3 dimensions. Define

f(φp, φy, φr) ≡Ax| sinφr sinφp − cosφr sinφy cosφp|+

Ay| cosφr sinφp + sinφr sinφy cosφp|+

Az| cosφy cosφp| − Axy, (36)

g(φp, φy, φr) ≡Ax| sinφr cosφp + cosφr sinφy sinφp|+

Ay| cosφr cosφp − sinφr sinφy sinφp|+

Az| cosφy sinφp| − Axz, (37)

h(φp, φy, φr) ≡ Ax| cosφr cosφy|+ Ay| sinφr cosφy|+ Az| sinφy| − Ayz. (38)

Then the problem is to find the roots of f , g, and h. Let A be the matrix of partial
derivatives

A =

fφp(φp, φy, φr) fφy(φp, φy, φr) fφr(φp, φy, φr)

gφp(φp, φy, φr) gφy(φp, φy, φr) gφr(φp, φy, φr)

hφp(φp, φy, φr) hφy(φp, φy, φr) hφr(φp, φy, φr)

 (39)

9

Approved for public release; distribution is unlimited.

where
fφp(φp, φy, φr) =

∂f(φp, φy, φr)

∂φp
(40)

and so on for the other partial derivatives. For this we need the derivative of the
absolute value:

d

dx
|u| = d

dx

√
u2 =

1

2
(u2)−1/22uu′ =

uu′√
u2

=
uu′

|u|
= sgn(u)u′, (41)

where sgn(x) is the sign function:

sgn(x) =


+1 if x > 0

0 if x = 0 .

−1 if x < 0

(42)

Then from Eqs. 36–38 we get

fφp(φp, φy, φr) = +Ax sgn(sinφr sinφp − cosφr sinφy cosφp)

(sinφr cosφp + cosφr sinφy sinφp)

+Ay sgn(cosφr sinφp + sinφr sinφy cosφp)

(cosφr cosφp − sinφr sinφy sinφp)

+Az sgn(cosφy cosφp)(− cosφy sinφp), (43)

fφy(φp, φy, φr) = +Ax sgn(sinφr sinφp − cosφr sinφy cosφp)

(− cosφr cosφy sinφp)

+Ay sgn(cosφr sinφp + sinφr sinφy cosφp)

(sinφr cosφy cosφp)

+Az sgn(cosφy cosφp)(− sinφy cosφp), (44)

fφr(φp, φy, φr) = +Ax sgn(sinφr sinφp − cosφr sinφy cosφp)

(cosφr sinφp + sinφr sinφy cosφp)

+Ay sgn(cosφr sinφp + sinφr sinφy cosφp)

(− sinφr sinφp + cosφr sinφy cosφp), (45)

10

Approved for public release; distribution is unlimited.

gφp(φp, φy, φr) = +Ax sgn(sinφr cosφp + cosφr sinφy sinφp)

(− sinφr sinφp + cosφr sinφy cosφp)

+Ay sgn(cosφr cosφp − sinφr sinφy sinφp)

(− cosφr sinφp − sinφr sinφy cosφp)

+Az sgn(cosφy sinφp)(cosφy cosφp), (46)

gφy(φp, φy, φr) = +Ax sgn(sinφr cosφp + cosφr sinφy sinφp)

(cosφr cosφy sinφp)

+Ay sgn(cosφr cosφp − sinφr sinφy sinφp)

(− sinφr cosφy sinφp)

+Az sgn(cosφy sinφp)(− sinφy sinφp), (47)

gφr(φp, φy, φr) = +Ax sgn(sinφr cosφp + cosφr sinφy sinφp)

(cosφr cosφp − sinφr sinφy sinφp)

+Ay sgn(cosφr cosφp − sinφr sinφy sinφp)

(− sinφr cosφp − cosφr sinφy sinφp), (48)

hφp(φp, φy, φr) = 0, (49)

hφy(φp, φy, φr) = +Ax sgn(cosφr cosφy)(− cosφr sinφy)+

+Ay sgn(sinφr cosφy)(− sinφr sinφy)+

+Az sgn(sinφy)(cosφy), (50)

hφr(φp, φy, φr) = +Ax sgn(cosφr cosφy)(− sinφr cosφy)

+Ay sgn(sinφr cosφy)(cosφr cosφy). (51)

Newton’s method for solving this 3-dimensional (3D) problem numerically for pitch,
yaw, and roll is expressed by the matrix iteration equationδφpδφy

δφr

 ≡
φp,n+1 − φp,n
φy,n+1 − φy,n
φr,n+1 − φr,n

 = A−1

f(φp, φy, φr)g(φp, φy, φr)

h(φp, φy, φr)

 , (52)

where the matrix A is given by Eq. 39. We pick a starting orientation and continue
iterating until either the δ’s fall below a preset tolerance value ε or we exceed a
maximum number of iterations—in which case we try another starting orientation.

11

Approved for public release; distribution is unlimited.

If we write this coefficient matrix (Eq. 39) as

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 , (53)

then the inverse is given by

A−1 =
1

detA

a22a33 − a23a32 a13a32 − a12a33 a12a23 − a13a22
a23a31 − a21a33 a11a33 − a13a31 a13a21 − a11a23
a21a32 − a22a31 a12a31 − a11a32 a11a22 − a12a21

 . (54)

Thus, we now have all the ingredients for implementing the proposed solution with
the program in Listing 1.

Listing 1. orient.cpp
1 // orient.cpp: Given the dimensions of an RPP and projected areas onto three orthogonal planes,
2 // finds a pitch-yaw-roll rotation sequence that will orient the RPP for these projected areas.
3 // The orientation is not unique and will depend upon the initial starting point.
4 // Method of solution makes use of Newton’s method in three dimensions.
5 // R. Saucier, October 2015
6
7 #include <iostream>
8 #include <cstdlib>
9 #include <cmath>

10 #include <iomanip>
11 #include <chrono>
12 #include <random>
13
14 inline double sgn(double x) {
15
16 if (x > 0.) return +1.;
17 else if (x < 0.) return -1.;
18 else return 0.;
19 }
20
21 int main(int argc, char* argv[]) {
22
23 const double D2R = M_PI / 180.; // to convert deg to rad
24 const double R2D = 180. / M_PI; // to convert rad to deg
25 const double TOL = 1.e-9; // convergence criterion
26 const int N = 100; // max number of iterations
27
28 double L = 3.; // length
29 double W = 2.; // width
30 double T = 1.; // thickness
31
32 double Ax = L * T; // area of side (initially along i)
33 double Ay = L * W; // area of top (initially along j)
34 double Az = W * T; // area of front (initially along k)
35
36 double A_xy = 4.5; // projected area on x-y plane
37 double A_xz = 6.5; // projected area on x-z plane
38 double A_yz = 3.5; // projected area on y-z plane
39
40 double p, y, r, cp, sp, cy, sy, cr, sr, f, g, h;
41 double e1, e2, e3, e4, e5, e6, e7, e8, e9;
42 double s1, s2, s3, s4, s5, s6, s7, s8, s9;
43 double fp, fy, fr, gp, gy, gr, hp, hy, hr;
44 double a11, a12, a13, a21, a22, a23, a31, a32, a33, det;
45 double b11, b12, b13, b21, b22, b23, b31, b32, b33;
46 double del_p, del_y, del_r;
47
48 // initial estimate can’t be zero
49 unsigned int seed = std::chrono::high_resolution_clock::now().time_since_epoch().count();
50 std::mt19937 rng(seed); // Mersenne Twister engine

12

Approved for public release; distribution is unlimited.

51 std::uniform_real_distribution<double> uniform(0., M_PI); // uniform distribution
52 p = uniform(rng);
53 y = uniform(rng);
54 r = uniform(rng);
55
56 if (argc == 4) { // optionally specify initial pitch, yaw, roll on commandline
57
58 p = atof(argv[1]) * D2R;
59 y = atof(argv[2]) * D2R;
60 r = atof(argv[3]) * D2R;
61 }
62
63 for (int i = 0; i < N; i++) {
64
65 cp = cos(p); sp = sin(p);
66 cy = cos(y); sy = sin(y);
67 cr = cos(r); sr = sin(r);
68
69 e1 = sr * sp - cr * sy * cp;
70 e2 = cr * sp + sr * sy * cp;
71 e3 = cy * cp;
72 e4 = sr * cp + cr * sy * sp;
73 e5 = cr * cp - sr * sy * sp;
74 e6 = cy * sp;
75 e7 = cr * cy;
76 e8 = sr * cy;
77 e9 = sy;
78
79 s1 = sgn(e1);
80 s2 = sgn(e2);
81 s3 = sgn(e3);
82 s4 = sgn(e4);
83 s5 = sgn(e5);
84 s6 = sgn(e6);
85 s7 = sgn(e7);
86 s8 = sgn(e8);
87 s9 = sgn(e9);
88
89 f = Ax * fabs(e1) + Ay * fabs(e2) + Az * fabs(e3) - A_xy;
90 g = Ax * fabs(e4) + Ay * fabs(e5) + Az * fabs(e6) - A_xz;
91 h = Ax * fabs(e7) + Ay * fabs(e8) + Az * fabs(e9) - A_yz;
92
93 fp = Ax * s1 * (sr * cp + cr * sy * sp) + Ay * s2 * (cr * cp - sr * sy * sp) + Az * s3 * (-cy * sp);
94 fy = Ax * s1 * (-cr * cy * sp) + Ay * s2 * (sr * cy * cp) + Az * s3 * (-sy * cp);
95 fr = Ax * s1 * (cr * sp + sr * sy * cp) + Ay * s2 * (-sr * sp + cr * sy * cp);
96
97 gp = Ax * s4 * (-sr * sp + cr * sy * cp) + Ay * s5 * (-cr * sp - sr * sy * cp) + Az * s6 * (cy * cp);
98 gy = Ax * s4 * (cr * cy * sp) + Ay * s5 * (-sr * cy * sp) + Az * s6 * (-sy * sp);
99 gr = Ax * s4 * (cr * cp - sr * sy * sp) + Ay * s5 * (-sr * cp - cr * sy * sp);

100
101 hp = 0.;
102 hy = Ax * s7 * (-cr * sy) + Ay * s8 * (-sr * sy) + Az * s9 * (cy);
103 hr = Ax * s7 * (-sr * cy) + Ay * s8 * (cr * cy);
104
105 a11 = fp; a12 = fy; a13 = fr;
106 a21 = gp; a22 = gy; a23 = gr;
107 a31 = hp; a32 = hy; a33 = hr;
108 det = a11 * (a22 * a33 - a23 * a32) + a12 * (a23 * a31 - a21 * a33) + a13 * (a21 * a32 - a22 * a31);
109 if (det == 0) {
110
111 std::cerr << "bad initial orientation: " << p * R2D << "\t" << y * R2D << "\t" << r * R2D << std::endl
112 << "program " << argv[0] << " stopped" << std::endl;
113 exit(EXIT_FAILURE);
114 }
115
116 b11 = (a22 * a33 - a23 * a32) / det;
117 b12 = (a13 * a32 - a12 * a33) / det;
118 b13 = (a12 * a23 - a13 * a22) / det;
119 b21 = (a23 * a31 - a21 * a33) / det;
120 b22 = (a11 * a33 - a13 * a31) / det;
121 b23 = (a13 * a21 - a11 * a23) / det;
122 b31 = (a21 * a32 - a22 * a31) / det;
123 b32 = (a12 * a31 - a11 * a32) / det;
124 b33 = (a11 * a22 - a12 * a21) / det;
125
126 del_p = b11 * f + b12 * g + b13 * h;
127 del_y = b21 * f + b22 * g + b23 * h;
128 del_r = b31 * f + b32 * g + b33 * h;
129
130 p -= del_p;
131 y -= del_y;
132 r -= del_r;
133
134 if (fabs(del_p) < TOL && fabs(del_y) < TOL && fabs(del_r) < TOL) break;
135

13

Approved for public release; distribution is unlimited.

136 if (i == N-1) {
137
138 std::cerr << "failed to converge after " << N << " iterations: f = " << f << " g = " << g << " h = " << h << std

::endl
139 << "try another initial orientation" << std::endl
140 << "program " << argv[0] << " stopped" << std::endl;
141 exit(EXIT_FAILURE);
142 }
143 }
144 std::cout << std::setprecision(9) << std::fixed;
145 std::cout << "pitch = " << fmod(p * R2D, 360.) << std::endl
146 << "yaw = " << fmod(y * R2D, 360.) << std::endl
147 << "roll = " << fmod(r * R2D, 360.) << std::endl;
148
149 return EXIT_SUCCESS;
150 }

The program may be compiled and run with the following commands:
1 c++ -O2 -Wall -std=c++11 -o orient orient.cpp -lm
2 ./orient

4. Results and Discussion
We now have

• a method for computing the projected areas on orthogonal planes, given the
cylinder or cuboid orientation, and

• a method for determining the pitch-yaw-roll rotation sequence to bring about
the orientation, given the projected area measurements.

This means that we have a way to check the results. We will show that projected area
measurements lead to a unique orientation for a cylinder, but that is not the case for
a cuboid.

4.1 Cylinder Orientation Sample Case
Consider an RCC with L = 1, D = 1, φp = 30◦, and φy = 15◦. The projected areas
are found to be Ayz = 1.16920, Axz = 1.25496, and Axy = 1.20494. Using these
values for the projected areas, the program in Listing 2 computes φp = ±30◦ and
φy = ±15◦, with the 4 possible orientations displayed in Fig. 2.

Listing 2. rcc.cpp
1 // rcc.cpp: compute pitch and yaw from area projections for an RCC (sample case)
2 // R. Saucier, June 2006 (Revised October 2015)
3
4 #include "Rotation.h"
5 #include <iostream>
6 #include <cmath>
7 #include <cstdlib>
8 #include <cassert>
9 #include <iomanip>

10 using namespace std;
11
12 double angle1(double a, double b, double c) { return asin(c / sqrt(a * a + b * b)) - atan(b / a); }
13 double angle2(double a, double b, double c) { return M_PI - asin(c / sqrt(a * a + b * b)) - atan(b / a); }
14
15 int main(void) {

14

Approved for public release; distribution is unlimited.

16
17 const double L = 1., D = 1.;
18 const double A = L * D;
19 const double B = 0.25 * M_PI * D * D;
20 const double A_MIN = A < B ? A : B;
21 const double A_MAX = sqrt(A * A + B * B);
22
23 cout << setprecision(6) << fixed;
24 cout << "L = " << L << endl;
25 cout << "D = " << D << endl;
26 cout << "A_MIN = " << A_MIN << endl;
27 cout << "A_MAX = " << A_MAX << endl;
28
29 double A_xy = 1.20494; // projected area on x-y plane
30 double A_xz = 1.25496; // projected area on x-z plane
31 double A_yz = 1.16920; // projected area on y-z plane
32
33 cout << "A_xy = " << A_xy << endl;
34 cout << "A_xz = " << A_xz << endl;
35 cout << "A_yz = " << A_yz << endl;
36
37 assert(A_MIN <= A_xy && A_xy <= A_MAX);
38 assert(A_MIN <= A_yz && A_yz <= A_MAX);
39 assert(A_MIN <= A_xz && A_xz <= A_MAX);
40
41 double phi_x[2], phi_y[2], phi_z[2];
42 phi_x[0] = angle1(A, B, A_yz);
43 phi_x[1] = angle2(A, B, A_yz);
44
45 phi_y[0] = angle1(A, B, A_xz);
46 phi_y[1] = angle2(A, B, A_xz);
47
48 phi_z[0] = angle1(A, B, A_xy);
49 phi_z[1] = angle2(A, B, A_xy);
50
51 double d, delta = 1.e36;
52 int ii = 0, jj = 0, kk = 0;
53 for (int i = 0; i < 2; i++) {
54 for (int j = 0; j < 2; j++) {
55 for (int k = 0; k < 2 ; k++) {
56
57 d = cos(phi_x[i]) * cos(phi_x[i]) +
58 cos(phi_y[j]) * cos(phi_y[j]) +
59 cos(phi_z[k]) * cos(phi_z[k]);
60 if (fabs(d - 1.) < delta) {
61 ii = i;
62 jj = j;
63 kk = k;
64 delta = fabs(d - 1.);
65 }
66 }
67 }
68 }
69
70 double th = phi_z[kk];
71 double ph = atan(cos(phi_y[jj]) / cos(phi_x[ii]));
72
73 cout << "Derived Angles (deg): " << endl
74 << " phi_x: " << phi_x[ii] * va::R2D << endl
75 << " phi_y: " << phi_y[jj] * va::R2D << endl
76 << " phi_z: " << phi_z[kk] * va::R2D << endl
77 << " theta: " << th * va::R2D << endl
78 << " phi: " << ph * va::R2D << endl;
79
80 va::Vector u = sin(th) * cos(ph) * va::Vector(1., 0., 0.) +
81 sin(th) * sin(ph) * va::Vector(0., 1., 0.) +
82 cos(th) * va::Vector(0., 0., 1.);
83
84 va::Rotation R(va::Vector(0., 0., 1.), u); // find rotation that takes k to u
85 va::sequence s = factor(R, va::XYZ);
86
87 cout << "pyr = " << +s.first * va::R2D << "\t" << +s.second * va::R2D << "\t" << s.third * va::R2D << endl;
88 cout << "pyr = " << +s.first * va::R2D << "\t" << -s.second * va::R2D << "\t" << s.third * va::R2D << endl;
89 cout << "pyr = " << -s.first * va::R2D << "\t" << +s.second * va::R2D << "\t" << s.third * va::R2D << endl;
90 cout << "pyr = " << -s.first * va::R2D << "\t" << -s.second * va::R2D << "\t" << s.third * va::R2D << endl;
91
92 cout << "Total effective yaw = " << acos(cos(s.first) * cos(s.second)) * va::R2D << endl;
93
94 return EXIT_SUCCESS;
95 }

15

Approved for public release; distribution is unlimited.

Fig. 2. An oriented cylinder for φp = ±30◦ and φy = ±15◦ is shown with its projected area in the
x-y plane in dark blue, the x-z plane in green, and the y-z plane in red. All of these have the
same projected areas on each of the orthogonal planes. The actual orientations are not quite
the same, but these are superficial differences since the effective yaw angle and the impact
angle as defined by FATEPEN are all the same (33.2259◦ in this example) and thus give the
same results for plate impact.

4.2 Cuboid Orientation Sample Case
Consider an RPP with L = 3 cm, W = 2 cm, and T = 1 cm, and let the projected
areas be Axy = 4.5 cm2, Axz = 6.5 cm2, Ayz = 3.5 cm2. When this information is
given to the orient.cpp program (Listing 1), it finds 4 different orientations that will
work, as displayed in Fig. 3, demonstrating that the orientation is not unique.

Fig. 3. The projected area on the orthogonal planes does not uniquely determine the cuboid orienta-
tion. The oriented cuboid (L = 3 cm, W = 2 cm, T = 1 cm) is shown with its projected area
in the x-y plane in dark blue (4.5 cm2), the x-z plane in green (6.5 cm2), and the y-z plane in
red (3.5 cm2). All 4 have the same projected areas on each of the orthogonal planes, although
we see that the actual orientations are not the same. One consequence of this is that the impact
angle, µ, which is the minimum angle that a face makes with the x-y plane, along with the
effective yaw angle, φeff, have different values for the 4 orientations—and this will lead to
different predictions from FATEPEN.

Next, we want to see what difference, if any, these different orientations will make
in FATEPEN. The cuboid penetrator is taken to be steel 4140 with a Brinell hardness

16

Approved for public release; distribution is unlimited.

of 300. It has a length of 3 cm = 1.1811 inches, width of 2 cm = 0.7874 inch, and
thickness of 1 cm = 0.3937 inch. Using a steel density of 7.83 g/cm3, it has a mass of
725 gr. The plate target is taken to be 0.25-inch steel with a Brinell hardness of 150.
All impacts were at 0◦ obliquity. The cuboid is initially aligned so that its length
is along the z-axis, its width along the x-axis, and it thickness along the y-axis.
Then it is given the pitch-yaw-roll rotation sequence listed in Table 2 to give it the
orientation shown in Fig. 3, resulting in the following projected areas: Axy = 4.5

cm2, Axz = 6.5 cm2, and Ayz = 3.5 cm2. The target is taken to lie in the x-y plane.
This table also lists the residual mass mr, residual velocity vr, and limit velocity vL
for the 4 orientations. We see that there are significant differences in the residual
velocities. It is important to emphasize that all 4 orientations have the same projected
areas.

Table 2. FATEPEN predictions for a 725-gr steel cuboid with a striking velocity of 1500 f/s impacting
a 0.25-inch mild steel plate using version 3.3.10.3. In each case, the projected areas on the
orthogonal planes are the same. Note, in particular, the sensitivity of the residual velocity, vr.

Pitch (deg) Yaw (deg) Roll (deg) µ (deg) φeff (deg) mr (gr) vr (f/s) vL (f/s)

-160.576322 193.931472 1.054946 23.7 23.7 720.341 841.729 1194.12

-166.139458 299.729320 5.443168 61.2 61.2 723.672 547.712 1345.23

176.987194 67.658507 13.759713 67.7 67.7 723.349 376.671 1424.57

205.968278 176.788266 183.822078 26.2 26.2 721.834 830.670 1195.00

4.2.1 Impact Angle and Effective Yaw Angle
Let us also document how the impact angle and effective yaw angles are calculated
to check on the values output by FATEPEN. Let us consider the area vector for the
front, side, and top of the cuboid. Initially,

Af = WT k̂, As = LT ı̂, and At = LW ̂. (55)

And after the pitch-yaw-roll rotation sequence, these vectors can be calculated by
adapting Eqs. 30–32:

A′f = WT [sinφŷı− cosφy sinφp̂ + cosφy cosφpk̂], (56)

A′s = LT [(cosφr cosφy)̂ı+

(sinφr cosφp + cosφr sinφy sinφp)̂+

(sinφr sinφp − cosφr sinφy cosφp)k̂], (57)

17

Approved for public release; distribution is unlimited.

A′t = LW [(− sinφr cosφy)̂ı+

(cosφr cosφp − sinφr sinφy sinφp)̂+

(cosφr sinφp + sinφr sinφy cosφp)k̂]. (58)

The effective yaw angle, φeff, is the angle between the length of the cuboid and the
target normal. It is obtained from the dot product betweenA′f and k̂, so from Eq. 56,
φeff = cos−1(cosφy cosφp). However, if this angle turns out to be greater than 90◦,
then we should use the back face. Therefore, the correct angle is actually

φeff = min[cos−1(cosφy cosφp), π − cos−1(cosφy cosφp)]. (59)

The contact angle, µ, is the angle between each face of the cuboid and the target
normal, and the impact angle, µ, is the minimum of all the contact angles. Therefore,
from Eqs. 55, 56, and 57,

µ = min[cos−1(cosφy cosφp),

π − cos−1(cosφy cosφp),

cos−1(sinφr sinφp − cosφr sinφy cosφp),

π − cos−1(sinφr sinφp − cosφr sinφy cosφp),

cos−1(cosφr sinφp + sinφr sinφy cosφp),

π − cos−1(cosφr sinφp + sinφr sinφy cosφp)]. (60)

Applying these formulas for the 4 orientations shown in Table 2, we find µ =

23.7454◦, µ = 30.4564◦, µ = 24.5429◦, and µ = 26.1524◦. Notice that 2 of these
angles disagree with the values output by FATEPEN as listed in Table 2. Even though
the FATEPEN documentation states that µ is the minimum contact angle, it seems to
always equal the effective yaw angle instead.

A newer version of FATEPEN (3.3.18.0) was also run,∗ which produced the results
listed in Table 3.

∗I thank Timothy Mallory for making runs with both version 3.3.16.10 and 3.3.18.0, which
produced the same results shown in Table 3.

18

Approved for public release; distribution is unlimited.

Table 3. FATEPEN predictions for a 725-gr steel cuboid with a striking velocity of 1500 f/s impacting
a 0.25-inch mild steel plate using version 3.3.18.0. In each case, the projected areas on the
orthogonal planes are the same.

Pitch (deg) Yaw (deg) Roll (deg) µ (deg) φeff (deg) mr (gr) vr (f/s) vL (f/s)

-160.576322 193.931472 1.054946 23.7 23.7 720.338 757.72 1281.89

-166.139458 299.729320 5.443168 61.2 61.2 723.671 317.05 1456.00

176.987194 67.658507 13.759713 0.0 67.7 . . . 0.0 1549.32

205.968278 176.788266 183.822078 26.2 26.2 721.833 747.18 1282.89

So version 3.3.18.0 seems to say that the residual velocity can be half the striking
velocity, roughly one-fourth the striking velocity, or zero, depending upon angles
that we have no way of measuring during the test, even though the presented areas
on each of the orthogonal planes are all the same.

5. Conclusions
What are the implications from these results? In many cases, all we have are yaw
card estimates of the actual impact presented area, so that at best we only have the
projected area on one plane, the x-y plane. This may be adequate for a cylinder, but
it will not determine the orientation of a cuboid. What we have shown here is that
even if we have ideal measurements of the projected area on orthogonal planes, this
is still not enough to resolve the orientation. As far as FATEPEN is concerned, the
orientation is specified once the impact angle µ and the yaw angle φeff are known. I
am not aware of any measurement that can determine these during the tests. Thus, I
think we are justified in stating that this analysis shows that cuboids are not good
candidates for FATEPEN validation because the results are highly dependent upon
angles that we have no known way of measuring and no way of uniquely computing
from the measured projected areas.

What are the implications for trying to model natural fragments in FATEPEN? If we
expect to model natural fragments as multifaceted solids, then it seems we have a
real problem since we have no way of knowing the many contact angles, let alone
the impact angle. On the other hand, if we model natural fragments as the simplest
shape that has the same measured presented area, then yawed cylinders offer more
promise and can be checked against experiment.

Part of the problem here is that the FATEPEN code turns all shapes into “equivalent

19

Approved for public release; distribution is unlimited.

cylinders”.∗ So while we may be able to compute the contact angle of each face
of the cuboid, that is not necessarily the shape that the FATEPEN code is dealing
with at impact. We are much better off using cylinders since we can be assured that
FATEPEN is using the same shape. Further, it is more robust since we only need
to control the impact presented area and there is only one contact angle, which is
the angle the RCC face makes with the target normal. Once we know the impact
presented area and the cylinder dimensions, the impact angle is uniquely determined.
See Appendix B for an implementation of this procedure.

∗See Yatteau et al.,5 Section 2.1.4 on p. 2-5 and Section 4.1 on p. 4-1.

20

Approved for public release; distribution is unlimited.

6. References

1. Yatteau JD, Zernow RH, Recht GW, Edquist KT. FATEPEN. Version 3.0.0b.
Terminal Ballistic Penetration Model. Applied Research Associates (ARA)
Project 4714, prepared for Naval Surface Warfare Center, Dahlgren, VA; 1999
Jan.

2. Project THOR. The resistance of various metallic materials to perforation by
steel fragments: empirical relationships for fragment residual velocity and resid-
ual weight. Aberdeen Proving Ground (MD): Army Ballistic Research Labora-
tory (US); 1961 Apr. Report No.: TR-47.

3. Kuipers JB. Quaternions and rotation sequences: a primer with applications to
orbits, aerospace, and virtual reality. Princeton (NJ): Princeton University Press;
2002.

4. Mallory TD. FATEPEN steel-on-steel V50 estimates. Aberdeen Proving Ground
(MD): Army Research Laboratory (US); unpublished paper, 2015 Nov.

5. Yatteau JD, Zernow RH, Recht GW, Edquist KT. FATEPEN fast air target
encounter penetration (Ver. 3.0.0) terminal ballistic penetration model. Little-
ton (CO): Applied Research Associates, Inc.; 2001 Sep., revised 2005 Feb 2.
(Analyst’s manual; vol. 1).

21

Approved for public release; distribution is unlimited.

INTENTIONALLY LEFT BLANK.

22

Approved for public release; distribution is unlimited.

Appendix A. Formula for an Euler Sequence of Rotations

23

Approved for public release; distribution is unlimited.

Let the rotation be a Euler sequence about 3 (distinct or repeated) principal axes
unit-vectors ê1, ê2, ê3 as follows:

• First, a rotation of φ1 about ê1:

R1 = Rê1(φ1). (A-1)

• Second, a rotation of φ2 about the transformed ê2 unit vector:

R2 = Rê′
2
(φ2), (A-2)

where ê′2 = R1ê2.

• Third, a rotation of φ3 about the (doubly) transformed ê3 unit vector:

R3 = Rê′′
3
(φ3), (A-3)

where ê′′3 = R2ê
′
3 = R2R1ê3.

The total combined rotation is

R = R3R2R1 = Rê′′
3
(φ3)Rê′

2
(φ2)Rê1(φ1), (A-4)

where the rotations are applied successively from right to left.

Now, the rotation about ê′2 can be obtained by undoing the effect of the first rotation,
performing the rotation about ê2, and then rotating back:

R2 = Rê′
2
(φ2)

= R1Rê2(φ2)R
−1
1

= Rê1(φ1)Rê2(φ2)R
−1
ê1
(φ1). (A-5)

24

Approved for public release; distribution is unlimited.

Similarly,

R3 = Rê′′
3
(φ3)

= R2Rê′
3
(φ3)R

−1
2

= R2R1Rê3(φ3)R
−1
1 R−12 (and using Eq. A-5)

= [Rê1(φ1)Rê2(φ2)R
−1
ê1
(φ1)]Rê1(φ1)Rê3(φ3)R

−1
ê1
(φ1)[Rê1(φ1)Rê2(φ2)R

−1
ê1
(φ1)]

−1

= Rê1(φ1)Rê2(φ2)R
−1
ê1
(φ1)Rê1(φ1)Rê3(φ3)R

−1
ê1
(φ1)Rê1(φ1)R

−1
ê2
(φ2)R

−1
ê1
(φ1)

= Rê1(φ1)Rê2(φ2)Rê3(φ3)R
−1
ê2
(φ2)R

−1
ê1
(φ1). (A-6)

The combined rotation collapses into something very simple:

R = R3R2R1

= Rê1(φ1)Rê2(φ2)Rê3(φ3)R
−1
ê2
(φ2)R

−1
ê1
(φ1)Rê1(φ1)Rê2(φ2)R

−1
ê1
(φ1)Rê1(φ1)

= Rê1(φ1)Rê2(φ2)Rê3(φ3). (A-7)

Thus, we get the result that the combined rotation is equal to the successive rotations

about the original unit vectors but applied in reverse order. Explicitly, this means

Rê′′
3
(φ3)Rê′

2
(φ2)Rê1(φ1) = Rê1(φ1)Rê2(φ2)Rê3(φ3) . (A-8)

What we have shown so far is more or less a plausibility argument. Here is a
derivation using quaternions. We use the notation

qû(φ) = cos
φ

2
+ û sin

φ

2
(A-9)

for the unit quaternion that represents a counterclockwise rotation of φ radians about
the unit vector û. Then, referring to Eqs. A-1, A-2, and A-3,

R1 = qê1(φ1). (A-10)

R2 = qê′
2
(φ2) = cos

φ2

2
+ ê′2 sin

φ2

2
, (A-11)

where
ê′2 = qê1(φ1)ê2q

−1
ê1
(φ1), (A-12)

25

Approved for public release; distribution is unlimited.

so that

qê′
2
(φ2) = cos

φ2

2
+ ê′2 sin

φ2

2

= cos
φ2

2
+ qê1(φ1)ê2q

−1
ê1
(φ1) sin

φ2

2

= qê1(φ1)

(
cos

φ2

2
+ ê2 sin

φ2

2

)
q−1ê1

(φ1)

= qê1(φ1)qê2(φ2)q
−1
ê1
(φ1), (A-13)

and
R3 = qê′′

3
(φ3) = cos

φ3

2
+ ê′′3 sin

φ3

2
, (A-14)

where

ê′′3 = qê′
2
(φ2)ê

′
3q
−1
ê′
2
(φ2)

= qê′
2
(φ2)qê1(φ1)ê3q

−1
ê1
(φ1)q

−1
ê′
2
(φ2)

= [qê1(φ1)qê2(φ2)q
−1
ê1
(φ1)]qê1(φ1)ê3q

−1
ê1
(φ1)[qê1(φ1)qê2(φ2)q

−1
ê1
(φ1)]

−1

= qê1(φ1)qê2(φ2)q
−1
ê1
(φ1)qê1(φ1)ê3q

−1
ê1
(φ1)qê1(φ1)q

−1
ê2
(φ2)q

−1
ê1
(φ1)

= qê1(φ1)qê2(φ2)ê3q
−1
ê2
(φ2)q

−1
ê1
(φ1), (A-15)

so that

qê′′
3
(φ3) = cos

φ3

2
+ ê′′3 sin

φ3

2

= cos
φ3

2
+ qê1(φ1)qê2(φ2)ê3q

−1
ê2
(φ2)q

−1
ê1
(φ1) sin

φ3

2

= qê1(φ1)qê2(φ2)

(
cos

φ3

2
+ ê3 sin

φ3

2

)
q−1ê2

(φ2)q
−1
ê1
(φ1)

= qê1(φ1)qê2(φ2)qê3(φ3)q
−1
ê2
(φ2)q

−1
ê1
(φ1). (A-16)

Therefore, the total combined rotation is

R = R3R2R1 = qê′′
3
(φ3)qê′

2
(φ2)qê1(φ1)

= [qê1(φ1)qê2(φ2)qê3(φ3)q
−1
ê2
(φ2)q

−1
ê1
(φ1)][qê1(φ1)qê2(φ2)q

−1
ê1
(φ1)]qê1(φ1)

= qê1(φ1)qê2(φ2)qê3(φ3), (A-17)

as was to be shown.

26

Approved for public release; distribution is unlimited.

The program in Listing A-1 provides a way of checking this result.

Listing A-1. reverse.cpp
1 // reverse.cpp: program to check that a pitch-yaw-roll rotation sequence
2 // about transformed axes is equivalent to the reverse sequence about fixed axes
3
4 #include "Rotation.h"
5 #include <iostream>
6 #include <cstdlib>
7 #include <cmath>
8 #include <iomanip>
9 using namespace std;

10
11 int main(int argc, char* argv[]) {
12
13 va::Vector i(1., 0., 0.), j(0., 1., 0.), k(0., 0., 1.); // three unit vectors
14 va::Vector i1, j1, k1, i2, j2, k2, i3, j3, k3; // transformed unit vectors
15 va::Rotation Rp, Ry, Rr; // rotations for pitch, yaw and roll
16 double p = 0., y = 0., r = 0.;
17 if (argc == 4) {
18
19 p = atof(argv[1]) * va::D2R;
20 y = atof(argv[2]) * va::D2R;
21 r = atof(argv[3]) * va::D2R;
22 }
23
24 // first, perform pitch about x-axis
25 Rp = va::Rotation(i, p);
26 i1 = Rp * i;
27 j1 = Rp * j;
28 k1 = Rp * k;
29
30 // second, perform yaw about transformed y-axis
31 Ry = va::Rotation(j1, y);
32 i2 = Ry * i1;
33 j2 = Ry * j1;
34 k2 = Ry * k1;
35
36 // third, perform roll about doubly transformed z-axis
37 Rr = va::Rotation(k2, r);
38 i3 = Rr * i2;
39 j3 = Rr * j2;
40 k3 = Rr * k2;
41
42 cout << "First done the conventional way:" << endl;
43 cout << setprecision(6) << fixed;
44 cout << "i3 = " << i3 << endl;
45 cout << "j3 = " << j3 << endl;
46 cout << "k3 = " << k3 << endl << endl;
47
48 // perform rotation sequence in reverse order about fixed axes
49 va::Rotation R = va::Rotation(i, p) * va::Rotation(j, y) * va::Rotation(k, r);
50
51 cout << "Now, the same rotations done in reverse order about fixed axes:" << endl;
52 cout << "i = " << R * i << endl;
53 cout << "j = " << R * j << endl;
54 cout << "j = " << R * k << endl << endl;
55
56 va::Vector v = 3.4 * i - 5.7 * j + 2.3 * k; // an arbitrary vector
57
58 cout << "original vector:" << endl;
59 cout << v << endl << endl;
60
61 cout << "transformed vector using the conventional procedure:" << endl;
62 cout << Rr * Ry * Rp * v << endl << endl;
63
64 cout << "transformed vector using the reversed order about fixed axes:" << endl;
65 cout << R * v << endl;
66
67 return 0;
68 }

27

Approved for public release; distribution is unlimited.

For example, the commands
1 c++ -O2 -Wall -std=c++11 -o reverse reverse.cpp -lm
2 ./reverse 65. -137. 54.

will print the results
1 First done the conventional way:
2 i3 = -0.429879 -0.021405 0.902633
3 j3 = 0.591678 0.748463 0.299535
4 k3 = -0.681998 0.662832 -0.309083
5
6 Now, the same rotations done in reverse order about fixed axes:
7 i = -0.429879 -0.021405 0.902633
8 j = 0.591678 0.748463 0.299535
9 j = -0.681998 0.662832 -0.309083

10
11 original vector:
12 3.400000 -5.700000 2.300000
13
14 transformed vector using the conventional procedure:
15 -6.402747 -2.814501 0.650707
16
17 transformed vector using the reversed order about fixed axes:
18 -6.402747 -2.814501 0.650707

28

Approved for public release; distribution is unlimited.

Appendix B. Yaw Angle of a Cylinder as a Function of Shape Factor

29

Approved for public release; distribution is unlimited.

The dimensionless shape factor γ is defined by the equation

Ap = γV 2/3, (B-1)

where Ap is the projected area and V is the volume. The formula for the dimension-
less shape factor of a right-circular cylinder (RCC) as a function of yaw angle φy
is

γ(φy) = a sinφy + b cosφy, (B-2)

where

a ≡
(
π

4

L

D

)−2/3
L

D
and b ≡

(
π

4

L

D

)−2/3
π

4
. (B-3)

The yaw angle that gives the maximum shape factor is obtained by setting the
derivative with respect to φy equal to zero and solving for φy:(

dγ

dφy

)
γ=γmax

= a cosφy − b sinφy = 0, (B-4)

which gives
φy γ=γmax = tan−1

(a
b

)
. (B-5)

To simplify the notation, let φ̂y denote this angle: φ̂y ≡ φy γ=γmax . Then,

a = γmax sin φ̂y and b = γmax cos φ̂y, (B-6)

so that Eq. B-2 can be written as

γ(φy) =

γmax cos(φy − φ̂y) if φy > φ̂y

γmax cos(φ̂y − φy) if φy < φ̂y
, (B-7)

where φ̂y = cos−1(b/γmax). Solving for the yaw angle, we get

φy =

cos−1 (b/γmax) + cos−1 (γ/γmax) if γ < b

cos−1 (b/γmax)− cos−1 (γ/γmax) if γ ≥ b
, (B-8)

which shows that we can easily get the orientation (yaw angle) of an RCC from just
the impact presented area.

30

Approved for public release; distribution is unlimited.

The code in Listing B-1 implements this procedure by sampling dimensionless shape
factors from a lognormal distribution to generate the appropriate yawed RCC. The
program may be compiled and run with the following commands:

1 c++ -O2 -Wall -std=c++11 -o cyl cyl.cpp -lm
2 ./cyl

Listing B-1. cyl.cpp
1 // cyl.cpp: Implementation of an algorithm for generating FATEPEN RCCs to represent a specified shape factor.
2 // Given a dimensionless shape factor, generates the L/D and yaw angle for the RCC to represent it.
3 // The RCCs are disk-like in that the L/D <= Pi/4, which is necessary since [0.5,4.5]
4 // is the range of shape factors for artillery and rod-like RCCs don’t span this range.
5 // R. Saucier, October 2011
6
7 #include <iostream>
8 #include <iomanip>
9 #include <cstdlib>

10 #include <cmath>
11 #include <random>
12 #include <chrono>
13 using namespace std;
14
15 int main(int argc, char* argv[]) {
16
17 const int N = 1000; // number of samples
18 const double R2D = 180. / M_PI; // to convert from radians to degrees
19 const double SF_MIN = 0.5; // minimum shape factor (found from artillery fragments)
20 const double SF_MAX = 4.5; // maximum shape factor (found from artillery fragments)
21
22 // default values for the shape factor lognormal distribution from 122mm, 152mm and 155mm artillery
23 double mu = 0.590494; // these two parameters characterize the lognormal shape factor distribution
24 double sigma = 0.323433; // with mode = 1.63, median = 1.80 and mean = 1.90
25
26 // ability to override the default values from the command line by specifying min and max shape factor
27 // that is meant to capture 95% of the complete distribution (from 0.025 to 0.975)
28 if (argc == 3) {
29
30 double sfmin = atof(argv[1]);
31 double sfmax = atof(argv[2]);
32 mu = 0.5 * log(sfmin * sfmax);
33 sigma = log(sfmax / sfmin) / (2. * M_SQRT2 * 1.3859);
34 }
35
36 unsigned int seed = std::chrono::high_resolution_clock::now().time_since_epoch().count();
37 std::mt19937 rng(seed); // Mersenne Twister engine
38 std::lognormal_distribution<double> lognormal(mu, sigma); // lognormal shape factor distribution
39 std::uniform_real_distribution<double> uniform(0.069, M_PI_4); // uniform distribution for L/D
40
41 double a, b, c, th, sf_min, sf_max, sf, l_d, l, d, yaw, V = 1.; // here we use a fragment with unit volume
42 std::cout << std::setprecision(6) <<std::fixed;
43
44 for (int n = 0; n < N; n++) {
45
46 // normally, the shape factor would be provided, but here we get a shape factor within bounds [SF_MIN, SF_MAX]
47 do { sf = lognormal(rng); } while (sf < SF_MIN || sf > SF_MAX);
48
49 // now we want to realize this shape factor with a cylinder
50 do {
51 l_d = uniform(rng);
52 c = pow(M_PI_4 * l_d, -2./3.);
53 a = c * l_d;
54 b = c * M_PI_4;
55 sf_min = a;
56 sf_max = sqrt(a * a + b * b);
57 } while (sf < sf_min || sf > sf_max);
58
59 if (sf < b) th = acos(b / sf_max) + acos(sf / sf_max);
60 else th = acos(b / sf_max) - acos(sf / sf_max);
61
62 d = pow(V / (M_PI_4 * l_d), 1./3.);
63 l = d * l_d;
64 yaw = th * R2D;
65
66 std::cout << l_d << "\t" << yaw << std::endl;
67 }
68
69 return EXIT_SUCCESS;
70 }

31

Approved for public release; distribution is unlimited.

INTENTIONALLY LEFT BLANK.

32

Approved for public release; distribution is unlimited.

List of Symbols, Abbreviations, and Acronyms

TERMS:

FATEPEN: Fast Air Target Encounter Penetration

RCC: right-circular cylinder

RPP: rectangular parallelepiped

MATHEMATICAL SYMBOLS:

Rê(θ): Rotation about the unit vector ê through the angle θ

33

Approved for public release; distribution is unlimited.

1
(PDF)

DEFENSE TECHNICAL
INFORMATION CTR
DTIC OCA

2
(PDF)

DIRECTOR
US ARMY RESEARCH LAB
RDRL CIO LL
IMAL HRA MAIL & RECORDS MGMT

1
(PDF)

GOVT PRINTG OFC
A MALHOTRA

1
(HC)

NVL SURFC WARFARE CTR
ATTN: D DICKINSON G24
6138 NORC AVE STE 313
DAHLGREN VA 22448-5157

1
(HC)

APPLIED RESEARCH ASSOCIATES
ATTN: R ZERNOW
10720 BRADFORD RD STE 110
LITTLETON CO 80127-4298

ABERDEEN PROVING GROUND

8
(PDF)

RDRL SLB D
J COLLINS

RDRL SLB G
D CARABETTA
T MALLORY

RDRL SLB S
J AUTEN
R DIBELKA
S MORRISON
N REED
R SAUCIER

1
(HC)

R SAUCIER

34

